Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.804
Filtrar
1.
Sci Rep ; 14(1): 3610, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351191

RESUMO

Interneuron progenitor transplantation can ameliorate disease symptoms in a variety of neurological disorders. The strategy is based on transplantation of embryonic medial ganglionic eminence (MGE) progenitors. Elucidating how host brain environment influences the integration of interneuron progenitors is critical for optimizing this strategy across different disease states. Here, we systematically evaluated the influence of age and brain region on survival, migration, and differentiation of transplant-derived cells. We find that early postnatal MGE transplantation yields superior survival and more extensive migratory capabilities compared to transplantation during the juvenile or adult stages. MGE progenitors migrate more widely in the cortex compared to the hippocampus. Maturation to interneuron subtypes is regulated by age and brain region. MGE progenitors transplanted into the dentate gyrus sub-region of the early postnatal hippocampus can differentiate into astrocytes. Our results suggest that the host brain environment critically regulates survival, spatial distribution, and maturation of MGE-derived interneurons following transplantation. These findings inform and enable optimal conditions for interneuron transplant therapies.


Assuntos
Encéfalo , 60661 , Córtex Cerebral , Hipocampo , Interneurônios/fisiologia , Eminência Mediana
2.
Nat Commun ; 14(1): 8097, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062045

RESUMO

Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.


Assuntos
Hormônio Liberador de Gonadotropina , Semaforinas , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Eminência Mediana/metabolismo , Permeabilidade Capilar , Neurônios/metabolismo , Puberdade , Semaforinas/genética , Semaforinas/metabolismo
3.
Yi Chuan ; 45(5): 425-434, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194589

RESUMO

Hypothalamic median eminence (ME) is a potential niche for neurons and oligodendrocytes, and trophic factors may regulate hypothalamic function by inducing cellular changes in the ME region. To determine whether diet-induced plasticity exists in hypothalamic stem cells dormant under physiological conditions, we used a combination of a normal diet, a high-fat diet, and a ketogenic diet (a low-carb, high-fat diet) to compare the proliferation of tanycytes (TCs) and oligodendrocyte precursor cells (OPCs) in the ME area of mice under the different diets. The results showed that the ketogenic diet could induce and promote the proliferation of OPCs in the ME area, and blocking the fatty acid oxidation program could inhibit the proliferation of OPCs induced by a ketogenic diet. This study preliminarily revealed the diet-induced effect on OPCs in the ME region and provided enlightenment for further study on the function of OPCs in the ME region.


Assuntos
Dieta Cetogênica , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Eminência Mediana , Proliferação de Células , Ácidos Graxos , Diferenciação Celular
4.
Mol Metab ; 69: 101690, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739968

RESUMO

OBJECTIVE: Oligodendrocyte progenitor cell differentiation is regulated by nutritional signals in the adult median eminence (ME), but the consequences on local myelination are unknown. The aim of this study was to characterize myelin plasticity in the ME of adult mice in health or in response to chronic nutritional challenge and determine its relevance to the regulation of energy balance. METHODS: We assessed new oligodendrocyte (OL) and myelin generation and stability in the ME of healthy adult male mice using bromodeoxyuridine labelling and genetic fate mapping tools. We evaluated the contribution of microglia to ME myelin plasticity in PLX5622-treated C57BL/6J mice and in Pdgfra-Cre/ERT2;R26R-eYFP;Myrffl/fl mice, where adult oligodendrogenesis is blunted. Next, we investigated how high-fat feeding or caloric restriction impact ME OL lineage progression and myelination. Finally, we characterized the functional relevance of adult oligodendrogenesis on energy balance regulation. RESULTS: We show that myelinating OLs are continuously and rapidly generated in the adult ME. Paradoxically, OL number and myelin amounts remain remarkably stable in the adult ME. In fact, the high rate of new OL and myelin generation in the ME is offset by continuous turnover of both. We show that microglia are required for continuous OL and myelin production, and that ME myelin plasticity regulates the recruitment of local immune cells. Finally, we provide evidence that ME myelination is regulated by the body's energetic status and demonstrate that ME OL and myelin plasticity are required for the regulation of energy balance and hypothalamic leptin sensitivity. CONCLUSIONS: This study identifies a new mechanism modulating leptin sensitivity and the central control of energy balance and uncovers a previously unappreciated form of structural plasticity in the ME.


Assuntos
Leptina , Bainha de Mielina , Camundongos , Masculino , Animais , Bainha de Mielina/fisiologia , Camundongos Transgênicos , Eminência Mediana , Camundongos Endogâmicos C57BL
5.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598900

RESUMO

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Assuntos
Intolerância à Glucose , Obesidade Materna , Humanos , Feminino , Animais , Camundongos , Gravidez , Barreira Hematoencefálica/metabolismo , Eminência Mediana/metabolismo , Obesidade Materna/metabolismo , Mães , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
6.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36574295

RESUMO

Central integration of peripheral appetite-regulating signals ensures maintenance of energy homeostasis. Thus, plasticity of circulating molecule access to neuronal circuits involved in feeding behavior plays a key role in the adaptive response to metabolic changes. However, the mechanisms involved remain poorly understood despite their relevance for therapeutic development. Here, we investigated the role of median eminence mural cells, including smooth muscle cells and pericytes, in modulating gut hormone effects on orexigenic/anorexigenic circuits. We found that conditional activation of median eminence vascular cells impinged on local blood flow velocity and altered ghrelin-stimulated food intake by delaying ghrelin access to target neurons. Thus, activation of median eminence vascular cells modulates food intake in response to peripheral ghrelin by reducing local blood flow velocity and access to the metabolic brain.


Assuntos
Grelina , Eminência Mediana , Eminência Mediana/metabolismo , Apetite/fisiologia , Comportamento Alimentar , Ingestão de Alimentos
7.
Nat Commun ; 13(1): 5217, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064547

RESUMO

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones.


Assuntos
Córtex Cerebral , Interneurônios , Proteínas com Homeodomínio LIM , Eminência Mediana , Fatores de Transcrição , Animais , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interneurônios/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Eminência Mediana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Somatostatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell Rep ; 40(5): 111157, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926459

RESUMO

The function of the cerebral cortex depends on various types of interneurons (cortical interneurons [cINs]) and their appropriate allocation to the cortical layers. Caudal ganglionic eminence-derived cINs (cGE-cINs) are enriched in superficial layers. Developmental mechanisms directing cGE-cINs toward superficial layers remain poorly understood. We examine how developmental and final positioning of cGE-cINs are influenced by the Cxcl12, Cxcr4, Ackr3 module, the chief attractant system guiding medial ganglionic eminence-derived cINs (mGE-cINs). We find that Cxcl12 attracts cGE-cINs through Cxcr4 and supports their layer-specific positioning in the developing cortex. This requires the prevention of excessive Cxcr4 stimulation by Ackr3-mediated Cxcl12 sequestration. Postnatally, Ackr3 confines Cxcl12 action to the marginal zone. Unlike mGE-cINs, cGE-cINs continue to express Cxcr4 at early postnatal stages, which permits cGE-cINs to become positioned in the forming layer 1. Thus, chemoattraction by Cxcl12 guides cGE-cINs and holds them in superficial cortical layers.


Assuntos
Córtex Cerebral , Interneurônios , Movimento Celular/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Eminência Mediana , Mesoderma
9.
Front Endocrinol (Lausanne) ; 13: 953995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966104

RESUMO

The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.


Assuntos
Leptina , Eminência Mediana , Animais , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Eminência Mediana/metabolismo , Camundongos , Neuroglia/fisiologia
10.
Cell Mol Life Sci ; 79(8): 458, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907165

RESUMO

Body fluid homeostasis is critical to survival. The integrity of the hypothalamo-neurohypophysial system (HNS) is an important basis of the precise regulation of body fluid metabolism and arginine vasopressin (AVP) hormone release. Clinically, some patients with central diabetes insipidus (CDI) due to HNS lesions can experience recovery compensation of body fluid metabolism. However, whether the hypothalamus has the potential for structural plasticity and self-repair under pathological conditions remains unclear. Here, we report the repair and reconstruction of a new neurohypophysis-like structure in the hypothalamic median eminence (ME) after pituitary stalk electrical lesion (PEL). We show that activated and proliferating adult neural progenitor cells differentiate into new mature neurons, which then integrate with remodeled AVP fibers to reconstruct the local AVP hormone release neural circuit in the ME after PEL. We found that the transcription factor of NK2 homeobox 1 (NKX2.1) and the sonic hedgehog signaling pathway, mediated by NKX2.1, are the key regulators of adult hypothalamic neurogenesis. Taken together, our study provides evidence that adult ME neurogenesis is involved in the structural reconstruction of the AVP release circuit and eventually restores body fluid metabolic homeostasis during hypothalamic self-repair.


Assuntos
Líquidos Corporais , Eminência Mediana , Arginina Vasopressina/metabolismo , Líquidos Corporais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Neurogênese , Hipófise/metabolismo
11.
Hear Res ; 420: 108520, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617926

RESUMO

Acoustic overexposure can lead to decreased inhibition in auditory centers, including the inferior colliculus (IC), and has been implicated in the development of central auditory pathologies. While systemic drugs that increase GABAergic transmission have been shown to provide symptomatic relief, their side effect profiles impose an upper-limit on the dose and duration of use. A treatment that locally increases inhibition in auditory nuclei could mitigate these side effects. One such approach could be transplantation of inhibitory precursor neurons derived from the medial ganglionic eminence (MGE). The present study investigated whether transplanted MGE cells can survive and integrate into the IC of non-noise exposed and noise exposed mice. MGE cells were harvested on embryonic days 12-14 and injected bilaterally into the IC of adult mice, with or without previous noise exposure. At one-week post transplantation, MGE cells possessed small, elongated soma and bipolar processes, characteristic of migrating cells. By 5 weeks, MGE cells exhibited a more mature morphology, with multiple branching processes and axons with boutons that stain positive for the vesicular GABA transporter (VGAT). The MGE survival rate after 14 weeks post transplantation was 1.7% in non-noise exposed subjects. MGE survival rate was not significantly affected by noise exposure (1.2%). In both groups the vast majority of transplanted MGE cells (>97%) expressed the vesicular GABA transporter. Furthermore, electronmicroscopic analysis indicated that transplanted MGE cells formed synapses with and received synaptic endings from host IC neurons. Acoustic stimulation lead to a significant increase in the percentage of endogenous inhibitory cells that express c-fos but had no effect on the percentage of c-fos expressing transplanted MGE cells. MGE cells were observed in the IC up to 22 weeks post transplantation, the longest time point investigated, suggesting long term survival and integration. These data provide the first evidence that transplantation of MGE cells is viable in the IC and provides a new strategy to explore treatment options for central hearing dysfunction following noise exposure.


Assuntos
Colículos Inferiores , Animais , Humanos , Eminência Mediana , Camundongos , Neurônios/fisiologia , Sinapses/fisiologia
13.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269475

RESUMO

GABAergic interneurons control the neural circuitry and network activity in the brain. The dysfunction of cortical interneurons, especially those derived from the medial ganglionic eminence, contributes to neurological disease states. Pluripotent stem cell-derived interneurons provide a powerful tool for understanding the etiology of neuropsychiatric disorders, as well as having the potential to be used as medicine in cell therapy for neurological conditions such as epilepsy. Although large numbers of interneuron progenitors can be readily induced in vitro, the generation of defined interneuron subtypes remains inefficient. Using CRISPR/Cas9-assisted homologous recombination in hPSCs, we inserted the coding sequence of mEmerald and mCherry fluorescence protein, respectively, downstream that of the LHX6, a gene required for, and a marker of medial ganglionic eminence (MGE)-derived cortical interneurons. Upon differentiation of the LHX6-mEmerald and LHX6-mCherry hPSCs towards the MGE fate, both reporters exhibited restricted expression in LHX6+ MGE derivatives of hPSCs. Moreover, the reporter expression responded to changes of interneuron inductive cues. Thus, the LHX6-reporter lines represent a valuable tool to identify molecules controlling human interneuron development and design better interneuron differentiation protocols as well as for studying risk genes associated with interneuronopathies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Eminência Mediana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Ann Neurol ; 91(2): 282-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981555

RESUMO

Narcolepsy type 1 (NT1) is a chronic sleep disorder correlated with loss of hypocretin(orexin). In NT1 post-mortem brains, we observed 88% reduction in corticotropin-releasing hormone (CRH)-positive neurons in the paraventricular nucleus (PVN) and significantly less CRH-positive fibers in the median eminence, whereas CRH-neurons in the locus coeruleus and thalamus, and other PVN neuronal populations were spared: that is, vasopressin, oxytocin, tyrosine hydroxylase, and thyrotropin releasing hormone-expressing neurons. Other hypothalamic cell groups, that is, the suprachiasmatic, ventrolateral preoptic, infundibular, and supraoptic nuclei and nucleus basalis of Meynert, were unaffected. The surprising selective decrease in CRH-neurons provide novel targets for diagnostics and therapeutic interventions. ANN NEUROL 2022;91:282-288.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Narcolepsia/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Contagem de Células , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imuno-Histoquímica , Locus Cerúleo/citologia , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/metabolismo , Masculino , Eminência Mediana/citologia , Eminência Mediana/diagnóstico por imagem , Eminência Mediana/metabolismo , Pessoa de Meia-Idade , Narcolepsia/diagnóstico por imagem , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/diagnóstico por imagem , Núcleo Hipotalâmico Paraventricular/metabolismo
15.
Neuropsychopharmacol Rep ; 42(1): 52-58, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090101

RESUMO

AIMS: Fatty acid-binding protein (FABP) regulates polyunsaturated fatty acid (PUFA) intracellular trafficking and signal transduction. Our previous studies demonstrated that the alteration of PUFA in the hypothalamus is involved in pain process. However, how FABP subtypes change during pain remain unclear. Here, we examined the expression changes and localization in the hypothalamic FABP subtype in postoperative pain model mice. METHODS: Paw incision-induced postoperative methods were adopted as a pain model in male ddY mice. Mechanical allodynia was examined using the von Frey test. The analysis of several FABPs mRNA was measured by real-time PCR, and cellular localization of its protein level was measured by immunofluorescent study. RESULTS: Postoperative pain mouse elicited mechanical allodynia on Day 2 after paw incision, and mRNA expression of FABP3 increased significantly in the hypothalamus in the postoperative pain mouse model compared to that in control mice. FABP3 protein expressed in the median eminence and the arcuate nucleus, and colocalized with Iba-1, which is a microglial cell marker. Its protein level significantly increased in the median eminence on Day 2 after incision and returned to the control level on Day 4 after incision. CONCLUSIONS: Our findings indicate that FABP3 in the median eminence may change in pain stimuli and may represent a molecular link controlling pain.


Assuntos
Proteínas de Ligação a Ácido Graxo , Eminência Mediana , Animais , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Eminência Mediana/metabolismo , Camundongos , Dor/genética
16.
Science ; 375(6579): eabk2346, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35084970

RESUMO

The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.


Assuntos
Interneurônios/fisiologia , Eminência Mediana/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese , Prosencéfalo/citologia , Animais , Animais Recém-Nascidos , Movimento Celular , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Interneurônios/citologia , Eminência Mediana/citologia , Eminência Mediana/crescimento & desenvolvimento , Camundongos , Células-Tronco Neurais/transplante , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Transplante Heterólogo
17.
J Genet Genomics ; 49(6): 523-536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35032691

RESUMO

Aging is a slow and progressive natural process that compromises the normal functions of cells, tissues, organs, and systems. The aging of the hypothalamic median eminence (ME), a structural gate linking neural and endocrine systems, may impair hormone release, energy homeostasis, and central sensing of circulating molecules, leading to systemic and reproductive aging. However, the molecular and cellular features of ME aging remain largely unknown. Here, we describe the transcriptional landscape of young and middle-aged mouse ME at single-cell resolution, revealing the common and cell type-specific transcriptional changes with age. The transcriptional changes in cell-intrinsic programs, cell-cell crosstalk, and cell-extrinsic factors highlight five molecular features of ME aging and also implicate several potentially druggable targets at cellular, signaling, and molecular levels. Importantly, our results suggest that vascular and leptomeningeal cells may lead the asynchronized aging process among diverse cell types and drive local inflammation and cellular senescence via a unique secretome. Together, our study uncovers how intrinsic and extrinsic features of each cell type in the hypothalamic ME are changed by the aging process, which will facilitate our understanding of brain aging and provide clues for efficient anti-aging intervention at the middle-aged stage.


Assuntos
Eminência Mediana , Transcriptoma , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Homeostase , Eminência Mediana/metabolismo , Camundongos , Reprodução , Transcriptoma/genética
19.
Neural Plast ; 2021: 4894881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659396

RESUMO

Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1ß and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.


Assuntos
Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Mediadores da Inflamação/antagonistas & inibidores , Eminência Mediana/transplante , Neovascularização Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Eminência Mediana/citologia , Eminência Mediana/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Ratos , Ratos Sprague-Dawley
20.
STAR Protoc ; 2(3): 100787, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34485946

RESUMO

The hypothalamic magnocellular neuroendocrine cells (MNCs) project to the posterior pituitary (PPi), regulating reproduction and fluid homeostasis. It has been challenging to selectively label and manipulate MNCs, as they are intermingled with parvocellular neuroendocrine cells projecting to the median eminence. Here, we provide a step-by-step protocol for specifically targeting the MNCs by infusing retrograde viral tracers into the PPi. When combined with optogenetics, chemogenetics, and transgenic animals, this approach allows cell-type-specific manipulation of MNCs in multiple sites for functional dissection. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021) and Tang et al. (2020).


Assuntos
Hipotálamo/citologia , Células Neuroendócrinas , Optogenética/métodos , Neuro-Hipófise/citologia , Animais , Animais Geneticamente Modificados , Masculino , Eminência Mediana/citologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Células Neuroendócrinas/citologia , Células Neuroendócrinas/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...